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Abstract— Advancements in wearable technology and
edge computing have transformed cardiovascular
monitoring, driving the demand for private, secure, and real-
time diagnostic solutions. This paper presents an edge-
wearable ECG monitoring system that integrates
personalized continuous wavelet transform (CWT)
preprocessing, a DeepFool-FGSM adversarial defense, and
an optimized parallel PoolFormer architecture for resource-
constrained FPGA deployment. The personalized CWT
captures individual-specific ECG features and mitigates
model-inversion privacy risks. The defense approach
balances robustness and computational efficiency and
reduces hardware complexity and energy via quantization-
aware training (QAT). Evaluations on field programmable
gate array (FPGA) confirm high diagnostic accuracy
(98.93%), real-time inference (latency <1.7 ms), and improved
robustness against adversarial perturbations, with 0.055 W
FPGA-core power. Together, the system delivers
confidentiality, integrity, and availability for cybersecure,
personalized ECG monitoring at the edge.

Index Terms—Edge Computing, Precision Diagnosis,
Secure Al, Personalized Electrocardiography, FPGA

|. INTRODUCTION

ecent progress in wearables and edge computing is

transforming how we monitor cardiovascular health

[1,2]. Electrocardiography (ECG) remains the gold
standard for non-invasive, early detection of cardiac issues [3],
but relying on remote servers for data processing raises privacy
and latency concerns, especially in less connected or resource-
limited settings [4].

Thanks to advances in sensor miniaturization and real-time
on-device analytics, today’s wearables can continuously track
heart signals and support more personalized care [5]. By
keeping computation at the edge, these systems reduce risks of
data exposure and cyber-attacks while easing the burden on
wireless networks [6]. As wearable devices become ubiquitous,
there is a pressing need for efficient and secure processing
solutions that can operate under stringent power and
computational constraints [7,8]. Integrating advanced signal
processing and lightweight machine learning models on edge
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platforms is key to enabling personalized, real-time diagnostics

[9]. The convergence of these technologies will not only

improve the accuracy of cardiovascular monitoring but also

support scalable, decentralized healthcare even in resource-
limited settings.

In this study, we present an edge-wearable ECG monitoring
system that integrates a personalized CWT preprocessing
pipeline for individual-specific spectral feature extraction, an
adversarially robust DeepFool-FGSM training framework [10],
and a parallel PoolFormer architecture optimized for efficient
real-time inference on FPGAs. Our main contributions are:

1. A modified PoolFormer architecture, parallel PoolFormer,
tailored for resource-constrained FPGA deployment. By
significantly reducing the model parameter count and
computational complexity, our refined architecture enables
efficient real-time inference without sacrificing accuracy.

2. An adversarial training strategy using a DeepFool-FGSM
defense framework to enhance model robustness. This
method explicitly mitigates the risks posed by subtle input
modifications, thereby reinforcing the robustness and
reliability of the classification model in real-world
scenarios.

3. A personalized CWT preprocessing framework that
captures individual-specific ECG features while ensuring
data privacy. This tailored approach not only enhances
diagnostic precision but also ensures the privacy of sensitive
health data.

The remainder of this paper is organized as follows: Section
Il reviews related work; Section Il details the system
architecture and parallel PoolFormer; Section IV describes
quantization-aware adversarial training with the DeepFool-
FGSM defense framework; Section V covers personalized
CWT signal processing; Section VI presents FPGA
implementation results; and Section VI concludes the paper.

Il. RELATED WORKS

Over the past decade, machine learning has enabled
significant advances in wearable and edge ECG monitoring for
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Fig. 1. Cybersecure edge-wearable ECG monitoring framework with personalized CWT preprocessing, adversarial defense, and FPGA-accelerated inference.
A single-lead ECG (360 Hz) is acquired using the MAXREFDES100 board. The FPGA implements a locally personalized CWT to extract 60>60 time—
frequency spectrograms, which serve as input to the parallel PoolFormer (PPF) model for AAMI-standard arrhythmia classification. The model is trained with
DeepFool-FGSM adversarial defense and 8-bit quantization-aware training (QAT) for robust, efficient deployment. Privacy is further protected by secret local

CWT scales, preventing inversion attacks from spectrograms.

arrhythmia detection and real-time screening [11]. Despite the
shift from cloud to edge to address latency and data locality,
most pipelines still use fixed preprocessing and generic models,
overlooking substantial inter-individual ECG variability and
thus limiting generalization [12].

Deterministic  spectro-temporal transforms can retain
biometric signatures, raising privacy concerns such as re-
identification and linkage attacks if features leave the device
boundary [13]. Federated and on-device learning reduce raw
data exposure, but do not obfuscate invertible features,
highlighting the need for personalized, privacy-preserving edge
preprocessing [12,13].

Robustness and deployment challenges further complicate
on-device ECG analysis: small perturbations can induce
clinically significant misclassifications [14], and most defense
strategies are developed for compute-rich settings, limiting
practical deployment on resource-constrained wearables [15].
Additionally, existing systems rarely unify personalized feature
extraction, adversarial robustness, and hardware efficiency
[16,17]. These gaps motivate an integrated on-device
framework addressing personalization, privacy, robustness, and
efficiency.

I1l. EDGE ECG MONITORING SYSTEM

A. Overall Architecture

The proposed edge-wearable ECG monitoring framework
(Fig. 1) integrates three key components: personalized
continuous  wavelet transform (CWT) preprocessing,
DeepFool-FGSM defense, and FPGA-accelerated deployment.
Raw ECG signals are acquired from wearable sensors and
locally transformed by a personalized CWT module, where
user-specific scale sets are stored on-device. This design adapts
to individual ECG morphology, extracts discriminative time—
frequency features, and simultaneously preserves privacy by
reducing the risk of reconstructing raw signals from released

features.

At the system core, a quantized parallel PoolFormer model
pre-trained on the MIT-BIH database (48 records from 47
subjects at 360 Hz, MLII) [18] performs arrhythmia
classification. To enhance robustness under hardware
constraints, the model is trained with a proposed hybrid
DeepFool-FGSM defense and quantization-aware training
(QAT). Finally, the entire framework is deployed on an Artix-
7 100T FPGA through hardware—software co-design, jointly
optimizing model architecture and implementation for
lightweight, energy-efficient, and secure real-time ECG
monitoring.

B. Beat Segmentation and Data Augmentation

During the pre-training, each ECG beat is segmented around
the R-wave peak to ensure precise isolation of individual
heartbeats. The window of a single beat is defined by:

T(Rpeak(k — 1) + b) < T(Rpeak(k))
< T(Rpeak(k + 1) — (120 — b)) Q)

where T (Rpeak(k)) is the R-wave peak time of annotation k
and b is the beat range bias. The constant 120 represents the
excluded margin before and after the target beat within sample
window, preventing overlap from adjacent R-peaks and
ensuring consistent segmentation. To mitigate class imbalance
and improve generalization, we adopt biased random sampling
as shown in Fig. 2, epoch-wise subsampling of majority classes
to 10k samples with random-biased sample shifting
augmentation for minority classes to 4k samples, followed by a
small zero-mean noise injection as a label-preserving
perturbation to training beats.

C. Parallel PoolFormer Architecture

Building on previous modifications [19], the PoolFormer
architecture is further streamlined by reducing the number of
stages and replacing normalization with a simplified scaling
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Fig. 2. Biased random sampling with epoch-wise majority subsampling,
minority random-biased shifting, and small label-preserving zero-mean
noise. (Patient-wise 80/10/10 for training/validating/testing)

layer, thereby enhancing inference efficiency without
compromising performance. Inspired by recent advances in
large language model architectures [20], we propose a parallel
PoolFormer block to improve computational parallelism and

reduce resource overhead. The conventional two-stage
PoolFormer block [17] can be formulated as
y = x + pool(scale;(x)) (2)
z =7y + MLP(scale,(y)) (3)

where scale(*) is the scaling layer, pool(-) is the average
pooling and MLP(:) is the channel multi-layer perceptron
which has a multiple ratio of 4. To minimize the sequential
computation and intermediate variables, we leverage the
linearity and distributive properties of these operations to merge
consecutive linear transformations. This allows the second
stage to be unfolded and simplified as a single trainable linear
transformation:

MLP(scale,(y))

MLP(scalez (x) + scale,(pool(scale, (x)))) 4)

MLP(linear'(x)) (%)

Because both the identity mapping and learnable scaling are
channel-wise linear transforms, enabling their fusion into a
single learnable channel scaling scale’(+). The final parallel
PoolFormer block thus computes:

z = x + pool(scale, (x)) + MLP(linear’ (x))
= scale’(x) + pool(scale’ (x)) + MLP'(scale’ (x)) (6)

By exploiting the linear characteristics of its operations and
learnable parameters, the block can be rearranged into a parallel
format as shown in Fig. 1. This reorganization simplifies the
structure, enhances parallelizability, and preserves skip/merge
functionalities. Experimentally, the parallel block reduces
memory usage by over 25% and significantly improves
inference speed and energy efficiency, demonstrating its
effectiveness for edge deployment. This streamlined memory

usage reduces both data transfer and computation, resulting in
substantial improvements in inference speed and energy
efficiency.

IV. DEEPFOOL—-FGSM DEFENSE FRAMEWORK

To strengthen system robustness under adversarial and low-
precision constraints, we propose a hybrid defense that combines
DeepFool and FGSM adversarial training with Quantization-
Aware Training (QAT). This framework defends against both
gradient-based (PGD [21], BIM [22]) and decision-based (HSJ
[23]) attacks, while ensuring robustness at deployment precision
on resource-constrained edge devices.

A. DeepFool Sample Generation with FGSM Training

DeepFool generates adversarial examples by iteratively
linearizing decision boundaries to estimate the minimal
perturbation required to alter a prediction. This iterative process
produces boundary-sensitive perturbations that remain close to
the original data manifold, thereby revealing vulnerabilities in
regions critical to classification. Training with such finely tuned
samples strengthens the model against subtle, hard-to-detect
adversarial attacks. In contrast, FGSM applies a one-step
gradient update to perturb inputs along the most vulnerable
direction. Although less precise than DeepFool, FGSM is
highly efficient and can generate a large number of adversarial
samples with minimal overhead. Its broad but coarser
perturbations complement the fine-grained adversarial signals
of DeepFool.

By combining the two, we establish the proposed DeepFool-
FGSM defense framework, where DeepFool provides finely
tuned adversarial sample generation that probes decision
boundaries, and FGSM injects efficient one-step perturbations
directly into the training loop. This division of roles allows the
framework to balance robustness and efficiency, ensuring the
model is simultaneously exposed to boundary-level
perturbations and fast, computationally lightweight adversarial
examples, thereby improving both security and deployability on
edge devices.

B. Quantization-Aware Training

To accommodate the constraints of edge wearable devices,
Quantization-Aware Training (QAT) is integrated into the
adversarial training pipeline. QAT simulates low-precision
arithmetic during training, ensuring the model maintains
robustness when deployed on hardware with limited numerical
precision. We employ dynamic weight quantization, truncating
the extreme 2% of the weight distribution at both ends [7],
which normalizes weights, reduces quantization noise, and
preserves accuracy and adversarial robustness even at W8/A16
precision in pre-FPGA tests.

During training, as illustrated in Fig. 3, the model receives
both original and adversarial samples. In the forward pass,
INT8 quantization is applied to the weights in the parallel
PoolFormer, closely mimicking deployment conditions.
Gradients are computed with respect to the original floating-
point weights in the backward pass, preserving optimization
fidelity. This software-hardware co-design harmonizes
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Fig. 3. Training flowchart of the DeepFool-FGSM adversarial defense
with quantization-aware training. This framework enhances model
robustness and hardware deployment efficiency.

adversarial robustness with hardware-aware optimization,
enabling secure, efficient, and real-time inference on resource-
constrained edge devices.

C. Framework Performance Analysis

We evaluated the DeepFool-FGSM defense framework on a
parallel PoolFormer network with parameters in TABLE |,
subjected to three attack types: PGD, BIM, and HSJ. Model
performance was assessed at three stages: (i) baseline without
defense, (ii) DeepFool-FGSM defense in full precision, and (iii)
DeepFool-FGSM defense with INT8 QAT.

As shown in Fig. 4(a), the baseline model’s accuracy dropped
sharply in the presence of adversarial attacks, clearly revealing
its vulnerability. However, after integrating our DeepFool-
FGSM defense framework, the model’s robustness improved
markedly across all tested attacks shown in Fig. 4(b). This gain
reflects the complementary strengths of DeepFool’s precise,
boundary-focused perturbations and FGSM’s efficient, broad
coverage during adversarial training. The addition of QAT
further maintained this robustness under low-precision (INT8)
deployment, with the co-design approach reducing
computational complexity and energy consumption while
preserving defense integrity.

These results demonstrate that combining adversarial
training with quantization-aware optimization not only
strengthens model security against attacks but also ensures
efficient and reliable deployment on edge wearable devices,
bridging the gap between high-performance Al and practical
hardware constraints.

V. PERSONALIZED CWT PRESERVING DATA PRIVACY

A. Motivation for Localized Preprocessing

While adversarial training can enhance neural network
robustness against input perturbations, deep learning models in
healthcare remain vulnerable to model inversion attacks, which
can reconstruct original biometric signals by exploiting model
parameters and outputs, thus threatening privacy [24].
Conventional preprocessing pipelines, which use fixed, global
transformations, further exacerbate this risk by generating

TABLE I.
PARALLEL-POOLFORMER HYPER-PARAMETERS
. . Parallel
Stage # Token Layer Specification PoolFormer
Patch Patch Size 3x3, stride 3
Embed. Embed. Dim. 8
H W - . .
1 — X = PPF Pooling Size 3x3, stride 1
3 3 Block MLP Ratio 4
# Block 3
Patch Patch Size 3x3, stride 3
H w Embed. Embed. Dim. 16
2 — X — PPF Pooling Size 3x3, stride 1
1515 Block | MLP Ratio 4
# Block 1
Parameters (k) 5.4
MACs (M) 0.71
100+ 100 [ |PGD  087.2887.4407.47 967896919708
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Fig. 4. (a) Accuracy of the baseline model under different perturbation
levels when subjected to adversarial attacks (PGD, BIM, and HSJ). (b)
Classification accuracy under attacks across different training methods.

deterministic intermediate features that retain individual
identity information. As a result, static transforms can
inadvertently enable user re-identification or spectrogram
inversion attacks.

To address this, we propose an on-device, personalized CWT
preprocessing framework that stores both raw ECG data and
subject-specific scales locally. By adapting scale parameters
through local training to each individual’s ECG characteristics,
our approach not only obfuscates biometric identity and reduces
wireless payload, but also optimizes diagnostic performance.
This decentralized design both mitigates feature invertibility
and ensures spectral representations align with subject-specific
patterns, thereby enhancing privacy and signal fidelity.

B. Personalized Continuous Wavelet Transform

The continuous wavelet transform (CWT) decomposes a
signal into time—frequency components at multiple scales,
providing a multi-resolution analysis well-suited for non-
stationary signals such as ECG, where features like QRS
complexes and P/T waves vary over time. Unlike the Short-
Time Fourier Transform (STFT), which uses fixed window
sizes and faces a trade-off between time and frequency
resolution, CWT adapts to both fast and slow signal dynamics.
Our hardware-optimized edge implementation employs a
discrete, fixed-point streaming version of CWT, supporting
real-time processing and low power consumption while keeping
raw ECG data local and reducing wireless bandwidth by
transmitting only compact, task-specific features [25]. Based on
this, the default-mode representation for our personalized
implementation can be calculated as:
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where, f[n] represents the discrete signal at sample n, ¢[n] is
the wavelet function and j and k are the scale and translation of
the transform, respectively.

In this study, we set the default 60 CWT scales linearly from 1
to 90 and use the Morlet wavelet as the basis function. On the
edge device, local training with each individual’s ECG data is
used to adapt these scales, ensuring all preprocessing remains
subject-side. Analysis of personalized CWT scale profiles
across multiple subjects shown in Fig. 5 reveals substantial
inter-subject variability, demonstrating that a default approach
is insufficient and highlighting the need for personalized
preprocessing to achieve accurate ECG analysis. Our
experiments on the MIT-BIH dataset, covering 47 subjects with
diverse arrhythmia types, confirm this variability and support
the broad applicability of our approach.

By tailoring the CWT scales to each individual’s ECG
through local training, the transform captures clinically
important features, such as the specific morphologies of QRS
complexes, P waves, and T waves, while suppressing noise and
irrelevant spectral components. This personalized adaptation
improves feature separability, enabling more effective
classification by deep learning models. As shown in Fig. 6,
classification accuracy increased progressively as CWT scales
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Fig. 7. Reconstructed ECG signal sample of (a) 107 and (b) 200 subject
from spectrograms using default CWT scales show significant deviation
from the original signals

TABLE II.
COMPARISON OF SIGNAL RECOVERABILITY
RMSE SNR(dB) Classilflijcation
‘(’:"wgsona'ized 0.45 £0.26 188 +1.11 64.80 %
‘(’:"Ci/?ersona'ized 007240043 | 17.87 £1.65 95.72 %

were locally optimized for each subject, leading to more robust
and precise diagnostic results.

C. Identification protection

Multiple studies have shown that raw ECG waveforms can
uniquely identify individuals, posing significant privacy risks if
signals are reconstructed from released features [26]. Our
personalized CWT preprocessing inherently mitigates this
threat: because the individualized scale parameters remain
undisclosed, adversaries cannot accurately invert the
spectrogram to recover the original ECG, even if the features
are intercepted. As Fig. 7 demonstrates, attempts to invert
spectrograms using default scales yield reconstructions that
differ markedly from true waveforms.

Table 1l compares reconstruction metrics (RMSE, SNR) and
re-identification results obtained using a 2D CNN classifier,
with and without personalized CWT scales. When personalized,
the quality of signal inversion and identity classification drops
substantially, indicating reduced risk of model inversion attacks.
In contrast, using default linear scales enables much more
accurate reconstruction and identification, highlighting a
significant privacy vulnerability. While this study focuses on
feature-level protection, conventional encryption can be used in
parallel to secure data in transit; our personalized preprocessing
further safeguards privacy even if communication channels are
compromised.

VI.  FPGA IMPLEMENTATION RESULTS AND DISCUSSION

To ensure availability, the FPGA pipeline sustains real-time
latency and low power. The framework was first trained offline
on an i5-13600KF CPU and RTX3060 GPU, achieving 98.93%
diagnostic accuracy across all subjects. Benchmark
comparisons in Table Il show that our method delivers
competitive accuracy with the smallest model size, full
hardware  support, personalized  preprocessing, and
cybersecurity. In contrast, traditional non—deep-learning
approaches either yield lower accuracy or rely on complex



TABLE IlI.
COMPARISON BENCHMARK ACCURACY TABLE IV.
JBHI IEEE JBHI TBio- This FPGA IMPLEMENTATION DETAILS
Work 2022 Access 2024 CAS Work Development Board Arty A7 100T
[27] 2021 [28] [29] 2022 [30] EPGA XC7A100T
Feature NR. | Template |\ o Lc CWT Feature Extraction Personalized CWT
Extrac T Match T Samplin
' ping S NN Implemented Parallel PoolFormer
Model CNN Template ResNet Spiking ;g:)l_e Model Size (Kbit) 43.2
Struct. +FSM MLP | coimer CWT Precision W16/A16
Model Size LUTs 11413
(k) 8.2 3.2 90 14.3 54 FFs 15496
# Classes 5 2 6 5 5 BRAMs 175
Parallel Precision W8/A16
Acc. 0.991 0.981 N.R. 0.982 0.989 PoolFormer LUTs 20794
Recall N.R. N.R. N.R. 0.98 0.986 FFs 31498
Precision | N.R. N.R. N.R. 0983 | 0984 BRAMs 72
Inference Latency (ms) 1.66
[iscore ] N.R. N.R. 0.982 0.982 0.985 Inference Power | Dev. Board 1.50
Hardware | MCU | FPGA No F,iglé+ FPGA (W) FPGA core | 0.055
Energy/Inference | Dev. Board 2.49
Power (W) | 0.026* 0.081 N.R 9.3e-7 0.055 (mJ) FPGA core 0.091
Latency
(ms) 27 910 N.R 0.50 1.66
E?rgggy 0.71 73.7* NR | 75e4 | 0091 Laer Controllr < readyalid
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ensembles impractical for edge deployment [31]. The
optimized model was then deployed on an Artix-7 FPGA,
where hardware acceleration enabled real-time ECG processing
and diagnosis. The deployment integrates three co-designed
modules: (i) a personalized CWT preprocessor, (ii) a quantized
parallel PoolFormer inference engine, and (iii) an adversarial
defense layer using DeepFool-FGSM with QAT. Unified
hardware—software co-optimization ensures real-time, energy-
efficient, and privacy-preserving inference suitable for edge
wearables.

A. Hardware Architecture

The CWT and Parallel PoolFormer implemented on the
FPGA using a streaming architecture [32], where each layer
is mapped to a dedicated hardware block. These blocks
operate independently and communicate via a custom
ready/valid handshake protocol, forming a pipelined
architecture. All hardware components are designed at the
RTL level using a hardware description language (HDL), as
detailed in [33]. The CWT layer is implemented as a 1D
convolution with 60 output channels and reuses the same
hardware architecture as the standard convolutional layers.
The fusion of convolution and average pooling further
facilitates a  software—hardware  co-design.  This
implementation framework enables rapid integration and
deployment of the neural network (NN) on the FPGA,

delivering  high throughput with optimal resource
consumption. The high-level hardware architecture
implemented mirrors the Parallel PoolFormer module

Fig. 8. Block-level hardware architecture of a hardware layer. Each layer
operates independently and communicates with adjacent layers using a
custom ready/valid handshake protocol.

illustrated in Fig. 1, with each convolutional/pooling layer
instantiated as a distinct hardware block, following the block-
level architecture shown in Fig. 8.

B. Measurement Results

The hardware design is synthesized and implemented in
default mode using AMD Xilinx Vivado 2022.1.2, and the
generated Dbitstream is used to program the Artix-7 FPGA
(XC7A100T). Implementation details are summarized in Table
IV. The personalized CWT and Parallel PoolFormer modules
are integrated into a unified system, with the CWT block
allocated higher weight precision to preserve inference accuracy.
The final hardware implementation maintains identical accuracy
to the software model, as all quantization parameters are pre-
validated through simulation prior to deployment. Resource
utilization is reported from the post-implementation results
generated by Vivado. The measurement set is shown in Fig. 9 and
methodologies for the remaining evaluation metrics are described
below:

o [nference Latency: Input data batches are transmitted from a
host computer to the FPGA via UART. The average inference
latency is computed based on the number of inference results
returned within a fixed time window. This approach minimizes
the impact of UART-induced latency. Given that the total
number of computation cycles for the CWT and Parallel
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PoolFormer is deterministic, the average inference latency

accurately represents the system's inference latency.

o Average Inference Power: The Arty7 100T development board
is powered by a power supply through a JS220 precision power
analyzer. Average power consumed by the development board
is measured while the development board executes inference
workloads. The FPGA core power is obtained using the built-
in power monitoring rail, as described in the Arty7 manual.

o Energy per Inference: This metric is computed as the product
of average power and inference latency. It serves as a key
indicator of the energy efficiency of the implemented system.

With an inference latency well below 2ms, the system is suitable

for real-time applications. It is important to note that the reported

power reflects the total consumption of the entire development
board, including unused components that may contribute to
power consumption. Therefore, the actual power consumption of
the FPGA fabric alone is expected to be significantly lower.

Furthermore, due to the reconfigurable nature of FPGA platforms,

both the CWT and Parallel PoolFormer modules can be easily

fine-tuned or updated as needed. This flexibility enhances the
system's adaptability and can contribute to increased robustness
against adversarial attacks.

Compared with existing benchmarks for 5-class classification
shown in Table Ill, our implementation achieves significantly
lower latency and reduced energy per inference than the MCU-
based implementation. Although our hardware design does not
surpass the latency and energy efficiency of the ASIC-based
implementation reported in [42], the FPGA platform offers
greater robustness, flexibility, and practicality, which are critical
for secure and personalized medicine applications.

Beyond FPGAs, the architecture is also compatible with
ASICs, which can benefit from hardwired data paths and tighter
memory-compute integration, leading to improved energy and
area efficiency. However, this comes at the cost of
reconfigurability, limiting post-deployment updates and security
enhancements. The choice to adopt heterogeneous platforms or
remain on standalone FPGA/ASIC implementations should
depend on the specific target application requirements and
deployment conditions.

C. Discussion

In this study, we developed an edge-wearable ECG
monitoring system that integrates personalized CWT for
individualized feature extraction, a DeepFool-FGSM
adversarial defense, and a parallel PoolFormer architecture
optimized for FPGA deployment. The personalized CWT not
only strengthens protection of biometric data but also enhances
feature separability. The adversarial training framework
mitigates misclassification risks under attacks, while the
streamlined PoolFormer architecture reduces model parameters
and power consumption, enabling real-time inference on
resource-constrained devices. Together, these findings
highlight the feasibility of secure and efficient cardiovascular
monitoring at the edge.

Despite these advantages, the study has limitations.
Evaluation was confined to a single FPGA platform, the MIT-
BIH database with limited diversity, and a restricted set of
adversarial scenarios. Broader validation across heterogeneous
datasets and devices will be necessary to confirm
generalizability. Future work will include physiologically
constrained synthetic beats to address class imbalance, transfer
learning from larger ECG databases to improve out-of-
distribution robustness, and wider hardware benchmarking to
enhance portability.

Clinical translation is also a key next step. Collaborations
with hospital partners will allow validation on more diverse
patient populations and quantitative assessment of demographic
variability. While this work did not focus on explicit interval
extraction (e.g., RR, ST, QT), the preserved waveform
information enables extension toward automated -clinical
indices and individualized therapy planning. Moving beyond
beat-level classification, the framework can also be adapted for
event-level detection of arrhythmias such as atrial fibrillation
and ischemia.

Finally, the system’s low-latency and privacy-preserving
features suggest applicability beyond remote monitoring,
including acute hospital settings such as Emergency
Department triage. Integration with compliance teams will
further ensure alignment with regulatory and governance
requirements.

VII. CONCLUSION

In conclusion, this study presents an edge-wearable ECG
monitoring framework that integrates personalized CWT
preprocessing, a DeepFool-FGSM adversarial defense, and a
parallel PoolFormer optimized for FPGA deployment.
Confidentiality, integrity, and availability are jointly achieved
through local feature personalization, robustness against
PGD/BIM/HSJ attacks at deployment precision, and real-time
low-power inference. The framework achieved high diagnostic
accuracy, effective protection against biometric re-
identification, and was validated on FPGA for feasibility in
resource-constrained environments. Future investigations
should focus on broader hardware evaluation and clinical
validation to support widespread adoption in secure and
personalized cardiovascular diagnostics.
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