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Abstract— Advancements in wearable technology and 
edge computing have transformed cardiovascular 
monitoring, driving the demand for private, secure, and real-
time diagnostic solutions. This paper presents an edge-
wearable ECG monitoring system that integrates 
personalized continuous wavelet transform (CWT) 
preprocessing, a DeepFool–FGSM adversarial defense, and 
an optimized parallel PoolFormer architecture for resource-
constrained FPGA deployment. The personalized CWT 
captures individual-specific ECG features and mitigates 
model-inversion privacy risks. The defense approach 
balances robustness and computational efficiency and 
reduces hardware complexity and energy via quantization-
aware training (QAT). Evaluations on field programmable 
gate array (FPGA) confirm high diagnostic accuracy 
(98.93%), real-time inference (latency <1.7 ms), and improved 
robustness against adversarial perturbations, with 0.055 W 
FPGA-core power. Together, the system delivers 
confidentiality, integrity, and availability for cybersecure, 
personalized ECG monitoring at the edge. 

Index Terms—Edge Computing, Precision Diagnosis, 
Secure AI, Personalized Electrocardiography, FPGA  

I. INTRODUCTION 

ecent progress in wearables and edge computing is 

transforming how we monitor cardiovascular health 

[1,2]. Electrocardiography (ECG) remains the gold 

standard for non-invasive, early detection of cardiac issues [3], 

but relying on remote servers for data processing raises privacy 

and latency concerns, especially in less connected or resource-

limited settings [4].  

Thanks to advances in sensor miniaturization and real-time 

on-device analytics, today’s wearables can continuously track 

heart signals and support more personalized care [5]. By 

keeping computation at the edge, these systems reduce risks of 

data exposure and cyber-attacks while easing the burden on 

wireless networks [6]. As wearable devices become ubiquitous, 

there is a pressing need for efficient and secure processing 

solutions that can operate under stringent power and 

computational constraints [7,8]. Integrating advanced signal 

processing and lightweight machine learning models on edge 
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platforms is key to enabling personalized, real-time diagnostics 

[9]. The convergence of these technologies will not only 

improve the accuracy of cardiovascular monitoring but also 

support scalable, decentralized healthcare even in resource-

limited settings. 

In this study, we present an edge-wearable ECG monitoring 

system that integrates a personalized CWT preprocessing 

pipeline for individual-specific spectral feature extraction, an 

adversarially robust DeepFool–FGSM training framework [10], 

and a parallel PoolFormer architecture optimized for efficient 

real-time inference on FPGAs. Our main contributions are: 

1. A modified PoolFormer architecture, parallel PoolFormer, 

tailored for resource-constrained FPGA deployment. By 

significantly reducing the model parameter count and 

computational complexity, our refined architecture enables 

efficient real-time inference without sacrificing accuracy. 

2. An adversarial training strategy using a DeepFool–FGSM 

defense framework to enhance model robustness. This 

method explicitly mitigates the risks posed by subtle input 

modifications, thereby reinforcing the robustness and 

reliability of the classification model in real-world 

scenarios.  

3. A personalized CWT preprocessing framework that 

captures individual-specific ECG features while ensuring 

data privacy. This tailored approach not only enhances 

diagnostic precision but also ensures the privacy of sensitive 

health data. 

The remainder of this paper is organized as follows: Section 

II reviews related work; Section III details the system 

architecture and parallel PoolFormer; Section IV describes 

quantization-aware adversarial training with the DeepFool–

FGSM defense framework; Section V covers personalized 

CWT signal processing; Section VI presents FPGA 

implementation results; and Section VII concludes the paper. 

II. RELATED WORKS  

Over the past decade, machine learning has enabled 

significant advances in wearable and edge ECG monitoring for 
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arrhythmia detection and real-time screening [11]. Despite the 

shift from cloud to edge to address latency and data locality, 

most pipelines still use fixed preprocessing and generic models, 

overlooking substantial inter-individual ECG variability and 

thus limiting generalization [12].  

Deterministic spectro-temporal transforms can retain 

biometric signatures, raising privacy concerns such as re-

identification and linkage attacks if features leave the device 

boundary [13]. Federated and on-device learning reduce raw 

data exposure, but do not obfuscate invertible features, 

highlighting the need for personalized, privacy-preserving edge 

preprocessing [12,13]. 

Robustness and deployment challenges further complicate 

on-device ECG analysis: small perturbations can induce 

clinically significant misclassifications [14], and most defense 

strategies are developed for compute-rich settings, limiting 

practical deployment on resource-constrained wearables [15]. 

Additionally, existing systems rarely unify personalized feature 

extraction, adversarial robustness, and hardware efficiency 

[16,17]. These gaps motivate an integrated on-device 

framework addressing personalization, privacy, robustness, and 

efficiency.  

III. EDGE ECG MONITORING SYSTEM 

A. Overall Architecture  

The proposed edge-wearable ECG monitoring framework 

(Fig. 1) integrates three key components: personalized 

continuous wavelet transform (CWT) preprocessing, 

DeepFool–FGSM defense, and FPGA-accelerated deployment. 

Raw ECG signals are acquired from wearable sensors and 

locally transformed by a personalized CWT module, where 

user-specific scale sets are stored on-device. This design adapts 

to individual ECG morphology, extracts discriminative time–

frequency features, and simultaneously preserves privacy by 

reducing the risk of reconstructing raw signals from released 

features. 

At the system core, a quantized parallel PoolFormer model 

pre-trained on the MIT-BIH database (48 records from 47 

subjects at 360 Hz, MLII) [18] performs arrhythmia 

classification. To enhance robustness under hardware 

constraints, the model is trained with a proposed hybrid 

DeepFool–FGSM defense and quantization-aware training 

(QAT). Finally, the entire framework is deployed on an Artix-

7 100T FPGA through hardware–software co-design, jointly 

optimizing model architecture and implementation for 

lightweight, energy-efficient, and secure real-time ECG 

monitoring. 

B. Beat Segmentation and Data Augmentation 

During the pre-training, each ECG beat is segmented around 

the R-wave peak to ensure precise isolation of individual 

heartbeats. The window of a single beat is defined by: 

𝑇(𝑅𝑝𝑒𝑎𝑘(𝑘 − 1) + 𝑏) ≤ 𝑇(𝑅𝑝𝑒𝑎𝑘(𝑘)) 

≤ 𝑇(𝑅𝑝𝑒𝑎𝑘(𝑘 + 1) − (120 − 𝑏))                   (1) 

where 𝑇(𝑅𝑝𝑒𝑎𝑘(𝑘)) is the R-wave peak time of annotation k 

and b is the beat range bias. The constant 120 represents the 

excluded margin before and after the target beat within sample 

window, preventing overlap from adjacent R-peaks and 

ensuring consistent segmentation. To mitigate class imbalance 

and improve generalization, we adopt biased random sampling 

as shown in Fig. 2, epoch-wise subsampling of majority classes 

to 10k samples with random-biased sample shifting 

augmentation for minority classes to 4k samples, followed by a 

small zero-mean noise injection as a label-preserving 

perturbation to training beats.   

C. Parallel PoolFormer Architecture  

Building on previous modifications [19], the PoolFormer 

architecture is further streamlined by reducing the number of 

stages and replacing normalization with a simplified scaling 

 

 
Fig. 1. Cybersecure edge-wearable ECG monitoring framework with personalized CWT preprocessing, adversarial defense, and FPGA-accelerated inference. 

A single-lead ECG (360 Hz) is acquired using the MAXREFDES100 board. The FPGA implements a locally personalized CWT to extract 60×60 time–
frequency spectrograms, which serve as input to the parallel PoolFormer (PPF) model for AAMI-standard arrhythmia classification. The model is trained with 

DeepFool–FGSM adversarial defense and 8-bit quantization-aware training (QAT) for robust, efficient deployment. Privacy is further protected by secret local 

CWT scales, preventing inversion attacks from spectrograms.  
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layer, thereby enhancing inference efficiency without 

compromising performance. Inspired by recent advances in 

large language model architectures [20], we propose a parallel 

PoolFormer block to improve computational parallelism and 

reduce resource overhead. The conventional two-stage 

PoolFormer block [17] can be formulated as 

𝑦 = 𝑥 + 𝑝𝑜𝑜𝑙(𝑠𝑐𝑎𝑙𝑒1(𝑥))                         (2) 

𝑧 = 𝑦 + 𝑀𝐿𝑃(𝑠𝑐𝑎𝑙𝑒2(𝑦))                         (3) 

where  𝑠𝑐𝑎𝑙𝑒(∙)  is the scaling layer, 𝑝𝑜𝑜𝑙(∙)  is the average 

pooling and 𝑀𝐿𝑃(∙)  is the channel multi-layer perceptron 

which has a multiple ratio of 4. To minimize the sequential 

computation and intermediate variables, we leverage the 

linearity and distributive properties of these operations to merge 

consecutive linear transformations. This allows the second 

stage to be unfolded and simplified as a single trainable linear 

transformation: 

𝑀𝐿𝑃(𝑠𝑐𝑎𝑙𝑒2(𝑦)) 

=  𝑀𝐿𝑃(𝑠𝑐𝑎𝑙𝑒2(𝑥) + 𝑠𝑐𝑎𝑙𝑒2(𝑝𝑜𝑜𝑙(𝑠𝑐𝑎𝑙𝑒1(𝑥))))      (4)                          

= 𝑀𝐿𝑃(𝑙𝑖𝑛𝑒𝑎𝑟′(𝑥))                                                    (5) 

Because both the identity mapping and learnable scaling are 

channel-wise linear transforms, enabling their fusion into a 

single learnable channel scaling 𝑠𝑐𝑎𝑙𝑒′(∙). The final parallel 

PoolFormer block thus computes: 

𝑧 = 𝑥 + 𝑝𝑜𝑜𝑙(𝑠𝑐𝑎𝑙𝑒1(𝑥)) + 𝑀𝐿𝑃(𝑙𝑖𝑛𝑒𝑎𝑟′(𝑥))     

= 𝑠𝑐𝑎𝑙𝑒′(𝑥) + 𝑝𝑜𝑜𝑙(𝑠𝑐𝑎𝑙𝑒′(𝑥)) + 𝑀𝐿𝑃′(𝑠𝑐𝑎𝑙𝑒′(𝑥)) (6) 

By exploiting the linear characteristics of its operations and 

learnable parameters, the block can be rearranged into a parallel 

format as shown in Fig. 1. This reorganization simplifies the 

structure, enhances parallelizability, and preserves skip/merge 

functionalities. Experimentally, the parallel block reduces 

memory usage by over 25% and significantly improves 

inference speed and energy efficiency, demonstrating its 

effectiveness for edge deployment. This streamlined memory 

usage reduces both data transfer and computation, resulting in 

substantial improvements in inference speed and energy 

efficiency.  

IV. DEEPFOOL–FGSM DEFENSE FRAMEWORK  

To strengthen system robustness under adversarial and low-

precision constraints, we propose a hybrid defense that combines 

DeepFool and FGSM adversarial training with Quantization-

Aware Training (QAT). This framework defends against both 

gradient-based (PGD [21], BIM [22]) and decision-based (HSJ 

[23]) attacks, while ensuring robustness at deployment precision 

on resource-constrained edge devices. 

A. DeepFool Sample Generation with FGSM Training 

DeepFool generates adversarial examples by iteratively 

linearizing decision boundaries to estimate the minimal 

perturbation required to alter a prediction. This iterative process 

produces boundary-sensitive perturbations that remain close to 

the original data manifold, thereby revealing vulnerabilities in 

regions critical to classification. Training with such finely tuned 

samples strengthens the model against subtle, hard-to-detect 

adversarial attacks. In contrast, FGSM applies a one-step 

gradient update to perturb inputs along the most vulnerable 

direction. Although less precise than DeepFool, FGSM is 

highly efficient and can generate a large number of adversarial 

samples with minimal overhead. Its broad but coarser 

perturbations complement the fine-grained adversarial signals 

of DeepFool.  

By combining the two, we establish the proposed DeepFool–

FGSM defense framework, where DeepFool provides finely 

tuned adversarial sample generation that probes decision 

boundaries, and FGSM injects efficient one-step perturbations 

directly into the training loop. This division of roles allows the 

framework to balance robustness and efficiency, ensuring the 

model is simultaneously exposed to boundary-level 

perturbations and fast, computationally lightweight adversarial 

examples, thereby improving both security and deployability on 

edge devices. 

B. Quantization-Aware Training 

To accommodate the constraints of edge wearable devices, 

Quantization-Aware Training (QAT) is integrated into the 

adversarial training pipeline. QAT simulates low-precision 

arithmetic during training, ensuring the model maintains 

robustness when deployed on hardware with limited numerical 

precision. We employ dynamic weight quantization, truncating 

the extreme 2% of the weight distribution at both ends [7], 

which normalizes weights, reduces quantization noise, and 

preserves accuracy and adversarial robustness even at W8/A16 

precision in pre-FPGA tests.  

During training, as illustrated in Fig. 3, the model receives 

both original and adversarial samples. In the forward pass, 

INT8 quantization is applied to the weights in the parallel 

PoolFormer, closely mimicking deployment conditions. 

Gradients are computed with respect to the original floating-

point weights in the backward pass, preserving optimization 

fidelity. This software-hardware co-design harmonizes 

 
Fig. 2. Biased random sampling with epoch-wise majority subsampling, 
minority random-biased shifting, and small label-preserving zero-mean 

noise. (Patient-wise 80/10/10 for training/validating/testing) 
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adversarial robustness with hardware-aware optimization, 

enabling secure, efficient, and real-time inference on resource-

constrained edge devices.   

C. Framework Performance Analysis  

We evaluated the DeepFool–FGSM defense framework on a 

parallel PoolFormer network with parameters in TABLE I, 

subjected to three attack types: PGD, BIM, and HSJ. Model 

performance was assessed at three stages: (i) baseline without 

defense, (ii) DeepFool–FGSM defense in full precision, and (iii) 

DeepFool–FGSM defense with INT8 QAT.  

As shown in Fig. 4(a), the baseline model’s accuracy dropped 

sharply in the presence of adversarial attacks, clearly revealing 

its vulnerability. However, after integrating our DeepFool–

FGSM defense framework, the model’s robustness improved 

markedly across all tested attacks shown in Fig. 4(b). This gain 

reflects the complementary strengths of DeepFool’s precise, 

boundary-focused perturbations and FGSM’s efficient, broad 

coverage during adversarial training. The addition of QAT 

further maintained this robustness under low-precision (INT8) 

deployment, with the co-design approach reducing 

computational complexity and energy consumption while 

preserving defense integrity. 

These results demonstrate that combining adversarial 

training with quantization-aware optimization not only 

strengthens model security against attacks but also ensures 

efficient and reliable deployment on edge wearable devices, 

bridging the gap between high-performance AI and practical 

hardware constraints. 

V. PERSONALIZED CWT PRESERVING DATA PRIVACY 

A. Motivation for Localized Preprocessing  

 While adversarial training can enhance neural network 

robustness against input perturbations, deep learning models in 

healthcare remain vulnerable to model inversion attacks, which 

can reconstruct original biometric signals by exploiting model 

parameters and outputs, thus threatening privacy [24]. 

Conventional preprocessing pipelines, which use fixed, global 

transformations, further exacerbate this risk by generating 

deterministic intermediate features that retain individual 

identity information. As a result, static transforms can 

inadvertently enable user re-identification or spectrogram 

inversion attacks. 

To address this, we propose an on-device, personalized CWT 

preprocessing framework that stores both raw ECG data and 

subject-specific scales locally. By adapting scale parameters 

through local training to each individual’s ECG characteristics, 

our approach not only obfuscates biometric identity and reduces 

wireless payload, but also optimizes diagnostic performance. 

This decentralized design both mitigates feature invertibility 

and ensures spectral representations align with subject-specific 

patterns, thereby enhancing privacy and signal fidelity.  

B. Personalized Continuous Wavelet Transform  

 The continuous wavelet transform (CWT) decomposes a 

signal into time–frequency components at multiple scales, 

providing a multi-resolution analysis well-suited for non-

stationary signals such as ECG, where features like QRS 

complexes and P/T waves vary over time. Unlike the Short-

Time Fourier Transform (STFT), which uses fixed window 

sizes and faces a trade-off between time and frequency 

resolution, CWT adapts to both fast and slow signal dynamics. 

Our hardware-optimized edge implementation employs a 

discrete, fixed-point streaming version of CWT, supporting 

real-time processing and low power consumption while keeping 

raw ECG data local and reducing wireless bandwidth by 

transmitting only compact, task-specific features [25]. Based on 

this, the default-mode representation for our personalized 

implementation can be calculated as: 

 
Fig. 3. Training flowchart of the DeepFool–FGSM adversarial defense 

with quantization-aware training. This framework enhances model 

robustness and hardware deployment efficiency. 

 
(a)                                                          (b) 

Fig. 4. (a) Accuracy of the baseline model under different perturbation 
levels when subjected to adversarial attacks (PGD, BIM, and HSJ). (b) 

Classification accuracy under attacks across different training methods.  

TABLE I.  
PARALLEL-POOLFORMER HYPER-PARAMETERS 

Stage # Token Layer Specification 
Parallel 

PoolFormer 

1 
𝐻

3
×

𝑊

3
 

Patch 

Embed. 

Patch Size 3×3, stride 3 

Embed. Dim. 8 

PPF 

Block 

Pooling Size 3×3, stride 1 

MLP Ratio 4 

# Block 3 

2 
𝐻

15
×

𝑊

15
 

Patch 

Embed. 

Patch Size 3×3, stride 3 

Embed. Dim. 16 

PPF 

Block 

Pooling Size 3×3, stride 1 

MLP Ratio 4 

# Block 1 

Parameters (k) 5.4 

MACs (M) 0.71 
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𝐶𝑊𝑇 (𝑗, 𝑘) =  ∑ 𝑓[𝑛] ∙ 𝜑[𝑛 − 2𝑘]
𝑛

 

=  
1

√𝑗
∑ 𝑓[𝑛] ∙ cos (𝜔 ∙

𝑛−2𝑘

𝑗
) ∙ 𝑒−

(
𝑛−2𝑘

𝑗
)2

2𝑛           (7) 

where,  𝑓[𝑛] represents the discrete signal at sample 𝑛, 𝜑[𝑛] is 

the wavelet function and 𝑗 and 𝑘 are the scale and translation of 

the transform, respectively. 

 In this study, we set the default 60 CWT scales linearly from 1 

to 90 and use the Morlet wavelet as the basis function. On the 

edge device, local training with each individual’s ECG data is 

used to adapt these scales, ensuring all preprocessing remains 

subject-side. Analysis of personalized CWT scale profiles 

across multiple subjects shown in Fig. 5 reveals substantial 

inter-subject variability, demonstrating that a default approach 

is insufficient and highlighting the need for personalized 

preprocessing to achieve accurate ECG analysis. Our 

experiments on the MIT-BIH dataset, covering 47 subjects with 

diverse arrhythmia types, confirm this variability and support 

the broad applicability of our approach.  

By tailoring the CWT scales to each individual’s ECG 

through local training, the transform captures clinically 

important features, such as the specific morphologies of QRS 

complexes, P waves, and T waves, while suppressing noise and 

irrelevant spectral components. This personalized adaptation 

improves feature separability, enabling more effective 

classification by deep learning models. As shown in Fig. 6, 

classification accuracy increased progressively as CWT scales 

were locally optimized for each subject, leading to more robust 

and precise diagnostic results.  

C. Identification protection  

Multiple studies have shown that raw ECG waveforms can 

uniquely identify individuals, posing significant privacy risks if 

signals are reconstructed from released features [26]. Our 

personalized CWT preprocessing inherently mitigates this 

threat: because the individualized scale parameters remain 

undisclosed, adversaries cannot accurately invert the 

spectrogram to recover the original ECG, even if the features 

are intercepted. As Fig. 7 demonstrates, attempts to invert 

spectrograms using default scales yield reconstructions that 

differ markedly from true waveforms. 

 Table II compares reconstruction metrics (RMSE, SNR) and 

re-identification results obtained using a 2D CNN classifier, 

with and without personalized CWT scales. When personalized, 

the quality of signal inversion and identity classification drops 

substantially, indicating reduced risk of model inversion attacks. 

In contrast, using default linear scales enables much more 

accurate reconstruction and identification, highlighting a 

significant privacy vulnerability. While this study focuses on 

feature-level protection, conventional encryption can be used in 

parallel to secure data in transit; our personalized preprocessing 

further safeguards privacy even if communication channels are 

compromised. 

VI.  FPGA IMPLEMENTATION RESULTS AND DISCUSSION  

To ensure availability, the FPGA pipeline sustains real-time 

latency and low power. The framework was first trained offline 

on an i5-13600KF CPU and RTX3060 GPU, achieving 98.93% 

diagnostic accuracy across all subjects. Benchmark 

comparisons in Table III show that our method delivers 

competitive accuracy with the smallest model size, full 

hardware support, personalized preprocessing, and 

cybersecurity. In contrast, traditional non–deep-learning 

approaches either yield lower accuracy or rely on complex 

 
(a)                                                       (b)  

Fig. 7. Reconstructed ECG signal sample of (a) 107 and (b) 200 subject 

from spectrograms using default CWT scales show significant deviation 
from the original signals 

TABLE II.  
COMPARISON OF SIGNAL RECOVERABILITY 

 
RMSE SNR(dB) 

ID 

Classification 

w/ Personalized 

CWT 
0.45 ± 0.26 1.88 ± 1.11 64.80 % 

w/o Personalized 

CWT 
0.072 ± 0.043 17.87 ± 1.65 95.72 % 

 

  
(a)                                                       (b) 

Fig. 5. (a) Comparison of personalized CWT scale profiles from three 

representative subjects (104, 203, 223) against the default linear scale 

distribution, with zoom-in highlighting individual variability at low scales. 
(b) Box plot showing the distribution of scale deviations across all 

subjects. 

 
Fig. 6. Classification accuracy across subjects over local training epochs 

for personalized CWT.  
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ensembles impractical for edge deployment [31]. The 

optimized model was then deployed on an Artix-7 FPGA, 

where hardware acceleration enabled real-time ECG processing 

and diagnosis. The deployment integrates three co-designed 

modules: (i) a personalized CWT preprocessor, (ii) a quantized 

parallel PoolFormer inference engine, and (iii) an adversarial 

defense layer using DeepFool–FGSM with QAT. Unified 

hardware–software co-optimization ensures real-time, energy-

efficient, and privacy-preserving inference suitable for edge 

wearables. 

A.  Hardware Architecture  

The CWT and Parallel PoolFormer implemented on the 

FPGA using a streaming architecture [32], where each layer 

is mapped to a dedicated hardware block. These blocks 

operate independently and communicate via a custom 

ready/valid handshake protocol, forming a pipelined 

architecture. All hardware components are designed at the 

RTL level using a hardware description language (HDL), as 

detailed in [33]. The CWT layer is implemented as a 1D 

convolution with 60 output channels and reuses the same 

hardware architecture as the standard convolutional layers.  

The fusion of convolution and average pooling further 

facilitates a software–hardware co-design. This 

implementation framework enables rapid integration and 

deployment of the neural network (NN) on the FPGA, 

delivering high throughput with optimal resource 

consumption. The high-level hardware architecture 

implemented mirrors the Parallel PoolFormer module 

illustrated in Fig. 1, with each convolutional/pooling layer 

instantiated as a distinct hardware block, following the block-

level architecture shown in Fig. 8.  

B. Measurement Results  

The hardware design is synthesized and implemented in 

default mode using AMD Xilinx Vivado 2022.1.2, and the 

generated bitstream is used to program the Artix-7 FPGA 

(XC7A100T). Implementation details are summarized in Table 

IV. The personalized CWT and Parallel PoolFormer modules 

are integrated into a unified system, with the CWT block 

allocated higher weight precision to preserve inference accuracy. 

The final hardware implementation maintains identical accuracy 

to the software model, as all quantization parameters are pre-

validated through simulation prior to deployment. Resource 

utilization is reported from the post-implementation results 

generated by Vivado. The measurement set is shown in Fig. 9 and 

methodologies for the remaining evaluation metrics are described 

below:  

• Inference Latency: Input data batches are transmitted from a 

host computer to the FPGA via UART. The average inference 

latency is computed based on the number of inference results 

returned within a fixed time window. This approach minimizes 

the impact of UART-induced latency. Given that the total 

number of computation cycles for the CWT and Parallel 

TABLE III.  
COMPARISON BENCHMARK ACCURACY 

Work 

JBHI 

2022 

[27] 

IEEE 

Access 

2021 [28] 

JBHI 

2024 

[29] 

TBio-

CAS 

2022 [30] 

This 

Work 

Feature 

Extrac. 
N.R. 

Template 

Match 
N.R. 

LC 

Sampling 
CWT 

Model 

Struct. 
CNN 

Template 

+FSM 
ResNet 

Spiking 

rMLP 

Parallel 

Pool-
Former 

Model Size 

(k) 
8.2 3.2 90 14.3 5.4 

# Classes 5 2 6 5 5 

Acc. 0.991 0.981 N.R. 0.982 0.989 

Recall N.R. N.R. N.R. 0.98 0.986 

Precision N.R. N.R. N.R. 0.983 0.984 

F1 Score N.R. N.R. 0.982 0.982 0.985 

Hardware  MCU FPGA No 
FPGA+ 

ASIC 
FPGA 

Power (W) 0.026* 0.081 N.R 9.3e-7 0.055 

Latency 

(ms) 
27 910 N.R 0.50 1.66 

Energy 

(mJ) 
0.71 73.7* N.R 7.5e-4 0.091 

Person-

alized 

Diagnosis 

No Yes Yes No Yes 

Cyber-

security 
No No No No Yes 

N.R.: Not Reported  

*Calculated from values reported in the original paper. 

 
 

Fig. 8. Block-level hardware architecture of a hardware layer. Each layer 

operates independently and communicates with adjacent layers using a 

custom ready/valid handshake protocol.  

TABLE IV.  

FPGA IMPLEMENTATION DETAILS 

Development Board Arty A7 100T 

FPGA XC7A100T 

Feature Extraction  Personalized CWT 

NN Implemented Parallel PoolFormer 

Model Size (Kbit) 43.2 

CWT Precision W16/A16 

LUTs 11413 

FFs 15496 

BRAMs 17.5 

Parallel 

PoolFormer 

Precision W8/A16  

LUTs 20794 

FFs 31498 

BRAMs 72 

Inference Latency (ms) 1.66 

Inference Power 

(W)  

Dev. Board 1.50 

FPGA core 0.055 

Energy/Inference 

(mJ) 

Dev. Board 2.49 

FPGA core 0.091 
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PoolFormer is deterministic, the average inference latency 

accurately represents the system's inference latency.  

• Average Inference Power: The Arty7 100T development board 

is powered by a power supply through a JS220 precision power 

analyzer. Average power consumed by the development board 

is measured while the development board executes inference 

workloads. The FPGA core power is obtained using the built-

in power monitoring rail, as described in the Arty7 manual.  

• Energy per Inference: This metric is computed as the product 

of average power and inference latency. It serves as a key 

indicator of the energy efficiency of the implemented system. 

With an inference latency well below 2ms, the system is suitable 

for real-time applications. It is important to note that the reported 

power reflects the total consumption of the entire development 

board, including unused components that may contribute to 

power consumption. Therefore, the actual power consumption of 

the FPGA fabric alone is expected to be significantly lower. 

Furthermore, due to the reconfigurable nature of FPGA platforms, 

both the CWT and Parallel PoolFormer modules can be easily 

fine-tuned or updated as needed. This flexibility enhances the 

system's adaptability and can contribute to increased robustness 

against adversarial attacks.  

Compared with existing benchmarks for 5-class classification 

shown in Table III, our implementation achieves significantly 

lower latency and reduced energy per inference than the MCU-

based implementation. Although our hardware design does not 

surpass the latency and energy efficiency of the ASIC-based 

implementation reported in [42], the FPGA platform offers 

greater robustness, flexibility, and practicality, which are critical 

for secure and personalized medicine applications. 

Beyond FPGAs, the architecture is also compatible with 

ASICs, which can benefit from hardwired data paths and tighter 

memory-compute integration, leading to improved energy and 

area efficiency. However, this comes at the cost of 

reconfigurability, limiting post-deployment updates and security 

enhancements. The choice to adopt heterogeneous platforms or 

remain on standalone FPGA/ASIC implementations should 

depend on the specific target application requirements and 

deployment conditions.  

C. Discussion  

In this study, we developed an edge-wearable ECG 

monitoring system that integrates personalized CWT for 

individualized feature extraction, a DeepFool–FGSM 

adversarial defense, and a parallel PoolFormer architecture 

optimized for FPGA deployment. The personalized CWT not 

only strengthens protection of biometric data but also enhances 

feature separability. The adversarial training framework 

mitigates misclassification risks under attacks, while the 

streamlined PoolFormer architecture reduces model parameters 

and power consumption, enabling real-time inference on 

resource-constrained devices. Together, these findings 

highlight the feasibility of secure and efficient cardiovascular 

monitoring at the edge. 

Despite these advantages, the study has limitations. 

Evaluation was confined to a single FPGA platform, the MIT-

BIH database with limited diversity, and a restricted set of 

adversarial scenarios. Broader validation across heterogeneous 

datasets and devices will be necessary to confirm 

generalizability. Future work will include physiologically 

constrained synthetic beats to address class imbalance, transfer 

learning from larger ECG databases to improve out-of-

distribution robustness, and wider hardware benchmarking to 

enhance portability.  

Clinical translation is also a key next step. Collaborations 

with hospital partners will allow validation on more diverse 

patient populations and quantitative assessment of demographic 

variability. While this work did not focus on explicit interval 

extraction (e.g., RR, ST, QT), the preserved waveform 

information enables extension toward automated clinical 

indices and individualized therapy planning. Moving beyond 

beat-level classification, the framework can also be adapted for 

event-level detection of arrhythmias such as atrial fibrillation 

and ischemia.  

Finally, the system’s low-latency and privacy-preserving 

features suggest applicability beyond remote monitoring, 

including acute hospital settings such as Emergency 

Department triage. Integration with compliance teams will 

further ensure alignment with regulatory and governance 

requirements. 

VII. CONCLUSION 

In conclusion, this study presents an edge-wearable ECG 

monitoring framework that integrates personalized CWT 

preprocessing, a DeepFool–FGSM adversarial defense, and a 

parallel PoolFormer optimized for FPGA deployment. 

Confidentiality, integrity, and availability are jointly achieved 

through local feature personalization, robustness against 

PGD/BIM/HSJ attacks at deployment precision, and real-time 

low-power inference. The framework achieved high diagnostic 

accuracy, effective protection against biometric re-

identification, and was validated on FPGA for feasibility in 

resource-constrained environments. Future investigations 

should focus on broader hardware evaluation and clinical 

validation to support widespread adoption in secure and 

personalized cardiovascular diagnostics.  

 
Fig. 9. Power consumption measurement setup with Power JS220 

Precision Energy Analyzer. 
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